
Performance Models of Interactive,Immersive Visualization for Scienti�cApplicationsValerie E. TaylorEECS Department, Northwestern UniversityEvanston, Illinois USARick Stevens Thomas Can�eldMCS Department, Argonne National LaboratoryArgonne, Illinois USAAbstractIn this paper we develop a performance model for analyzing the end-to-end lag in a combined supercomputer/virtual environment. We �rstpresent a general model and then use this model to analyze the lag ofan interactive, immersive visualization of a scienti�c application. Thisapplication consists of a �nite element simulation executed on an IBMSP-2 parallel supercomputer and the results displayed in real-time in theCAVE Automatic Virtual Environment. Our model decouples the view-point lag (not involving the simulation) from the interaction lag (usingthe results of the simulations). This model allows one to understand therelative contributions to end-to-end lag of the following components: ren-dering, tracking, network latency, simulation time, and various types ofsynchronization lags. The results of the study indicate that the renderingand network latency are the major contributors of the end-to-end lag.
1

1 IntroductionInteractive, immersive visualization allows observers to move freely about com-puter generated 3D objects and to explore new environments. This technologycan be used to extend our perception and understanding of the real world byenabling observation of events that take place in spaces that are remote, pro-tracted or dilated in time, hazardous, or too small or large to view intricatedetails. The 3D environment can be a distortion of reality projected on a physi-cal framework that enables the display of non-visual, physical information, suchas temperature, velocity, electric and magnetic �elds, and stresses and strains.In engineering, this technology may be incorporated into the product designcycle to allow virtual prototyping and testing of products prior to the physicalconstruction. Hence, interactive, immersive 3D visualization is an importantmedium for scienti�c applications.An interactive, immersive visualization of scienti�c simulations involves fourmajor components: the graphics system, the display system, the simulation sys-tem, and the communications between the various components. The graphicssystem performs the calculations for the rendering of the objects used in thedisplay. These calculations are computationally intensive and often requirehigh-performance computers, especially for volume reconstruction. The dis-play system consists of the screen, projectors, interactive devices, and trackingsensors. The user interacts with the 3D objects via devices such as a headtracker or hand-held wand (similar to a mouse). The simulation system per-forms the calculations for the analysis of the scienti�c phenomenon. Againhigh-performance computers, often parallel systems, are required to reduce theexecution time of the simulation. The last component consists of the connec-tions used to communicate information between the user (via the display) andthe graphics system and between the graphics and simulation systems. A crit-ical issue to be addressed is how to reduce the end-to-end lag time, i.e., thedelay between a user action and the display of the result of that action. Liuet. al. [9] found lag time to be equally important as frame rate for immersivedisplays.Lag has been studied in the context of teleoperated machines, head-mounteddisplays, and telepresence systems [9, 16]. The goal of this paper is to extendthese models and techniques for lag analysis to include integrated supercom-puter applications with interactive, immersive virtual interfaces. The additionof supercomputer simulations into the virtual environment increases the com-plexity of the models. Hence, these models are important for understandingthe impact of the various system components on the lag time.We conduct an extensive case study of a visualization system to displaythe results of a �nite element simulation of a grinding process, a simple butwidely used manufacturing task. The display system consists of a CAVE (CaveAutomatic Virtual Environment) [11], an interactive immersive 3D system.We have instrumented all major processes in the system and have developeda performance model that allows us to understand the relative contributionsto end-to-end lag of rendering, tracking, local network connections to the su-percomputer, supercomputer simulation, and various types of synchronizationlags. The concepts presented in this paper can be extended easily to otherscienti�c applications, using both local and remote supercomputers.Our model decouples the viewpoint lag (not involving the simulation) from

the interaction lag (using the simulation results). Our analysis indicate thatthe major component of viewpoint lag is the rendering lag. For the interactionlag, majority of the time is comprised of rendering and network lags.The remainder of the paper is organized as follows. In Section 2 we discussprevious work, followed by the details of the visualization environment availableat Argonne National Laboratory (the site where this study was conducted) inSection 3. We present our general model for end-to-end lag in Section 4. The�ndings of the case study are given in Section 5. We discuss methods forreducing the lag in Section 6 and summarize the paper in Section 7.2 Previous WorkIn [16] Wloka presents a thorough analysis of lag time in multiprocessor virtualreality systems. The focus is on the viewpoint lag. He identi�es the varioussources of lag time: input device lag | time required to obtain position andangle measurements of input device, application lag | application-speci�c pro-cessing of input device mechanism, rendering lag | time to render the dataand display it, synchronization lag | total time the sample is waiting betweenprocessing stages, and frame-rate induced lag | the time between changes inthe display. In Wloka's system, the application-speci�c processing is directlydependent on one user input device. In contrast, we analyze an existing systemfor which the user has two input devices, the head tracker (which a�ects theviewpoint and interaction lags) and the wand (which a�ects the interactionlag). Methods for reducing the lag in our system must consider the relation-ship between the two lags; a reduction in lag for one input device may resultin an increase in lag for a second input device. Further, our system includes aparallel machine and a shared-memory multiprocessor system connected via anetwork. Therefore, we consider two additional sources of lag: the network lagand simulation lag.In [10] Mine characterizes the relative performance of various tracking tech-nologies, which include two magnetic trackers from Ascension Technology Cor-poration and two from Polhemus Incorporated. This characterization is consid-ered in the context of reducing end-to-end delay in head-mounted systems. Thefocus, however, is on the tracking lag only; no attention is given to the othersources of lag. In contrast, we consider all the sources of lag in our existingsystem.Methods for reducing lag is an active area of research. Such methods includeprediction [8, 3, 1], time-critical computing [4, 5, 15], and use of parallelism.Prediction methods use extrapolation to reduce tracker lag by predicting fu-ture input data based upon past data. These methods require that the othercomponents of lag have constant lag times. This is generally not the case, espe-cially for systems including scienti�c simulations executed on supercomputers.Time-critical computing trades computation time for computation accuracy,which is not advisable for directly reducing lag. The use of parallelism reducesthe lag by increasing the computing resources used for the computations. Inthis paper we consider the use of parallelism with the simulation and graphics.We also discuss the bene�ts of reduction in scene complexity for reducing lag.

Figure 1: Supercomputing/Visualization environment.3 Visualization EnvironmentThe interactive, immersive simulation environment at Argonne National Lab-oratory consists of a 128-node IBM SP-2 system, an SGI Onyx, network con-nections between the SGI Onyx and IBM SP-2, and a CAVE as illustrated inFigure 1 . Currently, the network connection can be con�gured to be an ATMOC-3c, NSC HIPPI switch, or Ethernet. Because of the focus on performance,we provide details of the various components of the environment.3.1 Display ComponentThe CAVE, the display component, creates a large �eld of view by projectingimages onto two walls and the
oor of a ten-foot cube. Infrared emitters aresynchronized to the projectors to provide a stereo sync for the Crystaleyes LCDglasses worn by each user. Stereo cues are provided by displaying sequentiallyimages of the left-eye view followed by the right-eye view. Tracking is providedby an Ascension Flock of Birds tracking system with two input modules. Onesensor is used to track the head movements, and the other is for the hand-held wand. The sensor on the wand is slaved to the head sensor, which isconnected via a serial line to the SGI Onyx. The wand also has three buttonsand a joystick for interacting with the virtual world. The wand buttons andjoystick are interfaced to the SGI Onyx via an IBM PC, which provides A/Dconversion, debounce, and calibration. In the CAVE, the scientist is e�ectivelyimmersed in the phenomenon under study and provides input to the simulationor experiment via the wand. In addition, other observers can passively sharethe virtual reality experience by wearing the LCD glasses.Ascension Flock of Birds sensors are used to generate the position and angleof the head unit and the wand. These sensors can perform updates at the rate

of 10 to 144 measurements per second [2]. The existing system is con�guredto operate in the range of 100 measurements per second. The buttons on thewand are sampled by an IBM PC at the rate of 100 Hz.3.2 Graphics ComponentThe SGI Onyx is a shared-memory multiprocessor system with an extensivegraphics subsystem. Our system has 128 MB RAM, 10 GB disk, four R4400processors and three RealityEngine2 graphics pipelines; the system runs Irix5.3 and AFS. Each RealityEngine2 has a geometry engine consisting of Inteli860 microprocessors, a display generator, and 4 MB raster memory [13]. TheOnyx is used to drive the virtual environment interface. Each graphics pipeis connected to an Electrohome Marque 8000 high-resolution projector, whichprojects a high-resolution image onto the screens of the CAVE. The projectorsare running at 96 Hz frame rate in stereo mode.All of the CAVE code is executed on the SGI Onyx, using all four R4400processors. The code consists of �ve processes: a main, three rendering, andone tracker. The main routine is responsible for sending and receiving data toand from the simulation. The rendering loops perform the calculations for thesurface graphics, and the tracker loop obtains the interactive commands. Thethree rendering processes, corresponding to the two walls and the
oor, eachrun on a dedicated R4400 processor; these processes synchronize at the end ofthe rendering calculations for each frame. The tracker and main processes timeshare the fourth processor. The code is explained further in Section 4.3.3 Simulation ComponentThe simulation component consists of a large-scale, 128-processor IBM SP-2supercomputer with a high-performance I/O environment. This system is usedfor general-purpose parallel supercomputing. Each SP node has 128 MB RAM,1 GB local disk and is connected to other processors via a TB-2 high-speedinterface to the IBM vulcan switch. Some of the processors in this systemhave been equipped with ATM, HIPPI, and Ethernet interfaces. The IBMsystem is also interfaced to 220 GB of high speed RAID disk and connectedto an Ampex DST-800 automated tape library. The I/O system of the IBMSP-2 will eventually be used for CAVE recording and playback experiments,but that work is beyond the scope of this paper. Simulations are executed onthe SP-2 using a scheduler developed at Argonne and can be run in batch orinteractive mode. For e�cient access, the processors used in the simulationwith the CAVE cannot be scheduled by other users.3.4 InterconnectionsA user controls the �eld of view with the head tracker and simulation param-eters with the wand. As discussed previously, the IBM PC and Flock of Birdstracking system are connected to two Onyx serial ports as illustrated in Fig-ure 1. The IBM SP-2 and SGI Onyx communicate via an ATM OC-3c, NSCHIPPI switch, or Ethernet. The ATM network uses a Fore Systems switch andboth 100 Mbps and 155 Mbps cards. The HIPPI interface is a 800 Mbps net-work that connects via a Network Systems Corporation's HIPPI switch. The

Ethernet provides a 10 Mbps connection. The IBM SP-2 and the SGI Onyxare within the same building, allowing us to use LAN networking technologyfor these experiments. One of our long-term goals is to use multiple supercom-puters and multiple CAVEs and derivatives (like ImmersaDesks and HMDs)for wide area collaborative use.4 Performance ModelRecall from Section 1 that the metric that we are attempting to minimize isthe lag time of the user interaction. Given two input devices, we consider twoclassi�cations of interactions:� movement of the head tracker: this type of interaction causes a change tothe �eld of view; the data sent to the simulation process is not modi�ed| the lag is de�ned as Qview� movement and clicking of wand buttons: this type of interaction causesmodi�cations to the simulation process, for which the results causes achange to the graphics (dictated by the meaning of the wand buttons) |the lag is de�ned as QinteractThe operations that are executed based upon a user interaction are the follow-ing:1. The sensors generate the position and rotation of the header tracker andwand; the personal computer records the position of the wand buttons(Ttrack) [input device lag]2. The wand data (read by the rendering process) is sent to the simulationprocess (Twrite) [network write lag]3. The simulation process uses this data to update the analysis (Tsim) [sim-ulation lag]4. The graphics process reads the newly generated simulation results (Tread)[network read lag]5. The graphics process uses the data from the simulation process and thetracker to render a new image (Trender) [rendering lag]In addition to the above lags there is also synchronization lag as describedpreviously. We consider four sources of synchronization lag: (1) Tsync(TR): thetime from when the tracker measurement is available until the data is read byone of the rendering processes, (2) Tsync(RS): the time from when the renderingprocess has read the updated wand values until the values are available forwriting to the simulation process, (3) Tsync(SR): the time from when the datais available from the simulation process until used by the rendering process,and (4) Tsync(F) the time from when the data is available in the frame bu�erand the image is available on the screen.

Figure 2: Components of lag time for Qview and Qinteract.Given the above sequence of operations, the following equations representthe lag time for the head tracker (Qview) and the wand (Qinteract):Qview = Ttrack + Tsync(TR) + Trender + Tsync(F) (1)Qinteract = Ttrack + Tsync(TR) + Tsync(RS) + Twrite + Tsim + Tread +Tsync(SR) + Trender + Tsync(F) (2)The derivation of these equations is discussed in the following section.4.1 Lag SourcesIn Figure 2, we provide a detailed diagram of the various lag terms and their re-lations to the lag time equations. The model assumes an asynchronous processimplementation of the system (i.e., each major process of the system is runningasynchronously). This assumption is consistent with the actual implementationof the visualization environment.The diagram consists of six major processes. Recall from Section 3.2 thatthe CAVE code entails �ve processes: one main process, three rendering pro-cesses, and one tracker process. The sixth process consists of the simulation,which may be executing on one or more processors of the IBM SP-2. In thispaper, we consider the simulation to be one process. More advanced modelsmay support the simulation as a number of processes that may be able to com-municate intermediate data to the rendering process or stagger communicationto reduce network latency.The main process runs on the Onyx and is responsible for initiating therendering processes (this is done only once) and communicating with the simu-lation process. Hence this process has three states: writing data via the network

to the SP-2, reading data via the network from the SP-2, and copying the sim-ulation data to the SGI shared memory to be used by the rendering processes.The time devoted to the memory copy is negligible and therefore not includedin the model. The simulation process consists of three states: reading from thenetwork from the main process, processing the simulation update, or writingdata to the network for the main process. Any wait time incurred with thenetwork is considered part of the corresponding read or write time.There are three rendering processes used for the displays on the two wallsand the
oor of the CAVE. These processes are indicated in the diagram asRender0, Render1, and Render2. These processes are essentially identical withthe exception of Render0 process, which reads the tracking data from the track-ing process and makes it available to the other rendering process. Only onerendering process performs this task to insure that all three rendering processesare performing calculations in response to the same tracker data. The render-ing processes use the tracking and simulation data to render the six imagesdisplayed in the CAVE; they synchronize at the end of each frame and dumptheir bu�ers.The tracker process is responsible for continuously reading the trackinginformation from the serial SGI ports, scaling the data, and writing the datainto a region of memory for reference by Render0. The tracker process is alsoresponsible for initialization of the tracker and wand controls. The trackerprocess, like the other processes, operates asynchronously, reading tracker dataas fast as the tracking system can produce it.4.2 Lag EquationsThe diagram in Figure 2 illustrates all the sources of lag that are used in ourmodel. Assuming a wand and tracker event occurs as indicated in the diagram,we can trace the lag times that result in a scene update due to a head event(indicated in the diagram) and a scene update due to a wand event (indicatedin the diagram).When a head tracker event occurs, the tracker process reads the values fromthe Flock of Birds ports, perform the calibration, and places these values inshared memory. The time to execute these operations is given by Ttracker inEquations (1) and (2). Typically, the tracker process is sampling the sensorsfaster that the rendering process can render a new display. Only the lastsample obtained prior to the start of a new rendering cycle is read by therendering process. Hence, the average \wait time" or synchronization lag ishalf the average tracker update time. This time corresponds to Tsync(TR) inthe equations. The head tracker sample, read by Render0 process, is usedby the three rendering processes to render a new image. This corresponds toTrender in the equation. When the new image data is available, it may not bedisplayed immediately. There is some wait time due to the frame rate and thescan rate of the projectors. The average of this synchronization time is half theframe and scan times per eye for stereo; this time is given by Tsync(F) in theequations. Lastly, we get the scene update from the head tracker event. Thesummation of these four terms compose the viewpoint lag or Qview.When a wand tracker event occurs, the sensors are again sampled by thetracker process and read by Render0 process. This task corresponds to Ttrackerand Tsync(TR) as described above. At this point, the analysis takes a di�erent

path from that taken with the viewpoint lag. Once the wand position hasbeen read by Render0 process, it is used by the main process to forward tothe simulation process. This wand data may not be read immediately by themain process. The average time that this data \waits" to be used is equal tohalf the time of the main process. This synchronization time corresponds toTsync(RS) in Equation (2). The main process sends these wand values to thesimulation process to be used for updates to the simulation analysis. Thesevalues are sent across the network connecting the SGI to the IBM SP-2. Thistime corresponds to Twrite. The simulation time is denoted by the term Tsim.The updated simulation values are then sent to the main process, correspondingto a read by the main process. This time is denoted by the term Tread. Afterthe data is read by the main process, it may not be used immediately by therendering processes. The average of this \wait" time is equal to half the averageof the rendering time; this synchronization time is denoted as Tsync(SR). Oncethe values have been read by the rendering processes, a new image is renderedand displayed corresponding to Trender + Tsync(F). The summation of thesenine terms compose the interaction lag or Qinteract.5 Case Study: Grinding ProcessThe problem used in this study is a computer simulation of a grinding process,which is commonly used in manufacturing environments. A picture of the vir-tual grinder is given in Figure 3. An operator is immersed in a machine roomand can perform the task of grinding a part with a wheel by controlling themotion of the three axes of a table with the wand. When the wheel is in contactwith the part on the table, heat is generated as a result of the grinding motion.Internal stress and
ow of heat are produced in the part, wheel, and table.The temperature and stress for a simple system are computed in real time onthe IBM SP-2; the simulations involve multibody dynamics and �nite elementanalysis. The results are selectively displayed on the various components. Ma-terials ablated by the grinding are ejected as small particles and displayed assparks. This prototype is indicative of larger systems used to analyze complexmechanical systems, including the detection of contacting surfaces, friction atthe interfaces, large rigid body motions, and thermal-mechanical analysis with�nite elements.The virtual grinder is fairly simple in that it has 433 elements and 788nodes. The analysis involved in this simple problem is representative of morecomplex structures such as an automotive disk brake with approximately 4000elements and 6000 nodes just to model the pads and rotor. Because of thesimplicity of our example, the simulation of the grinding process is executedon one processor of the IBM SP-2. Hence the focus is on the analysis of thesimulation with CAVE; we do not focus on the decomposition methods orinterprocessor communication of the parallel machine. These issues, however,are discussed brie
y in Section 6.3.5.1 Timing RelationshipsThe CAVE library and the application code were instrumented using the Pablosystem [12] and some SGI timing routines. The average time for each lag source

Figure 3: Virtual grinder.

Table 1: Various lag values for the base case.Lag Mean Std. Dev. %Qview %Qinteract(ms) (ms)Ttrack 30.0 8.8 11.19 4.34Tsync(TR) 15.0 | 5.60 2.17Trender 208.0 0.069 77.61 30.14Tsync(RS) 99.0 | NA 14.35Twrite 0.102 0.048 NA 0.01Tsim 21.8 1.2 NA 3.16Tread 197.0 65.0 NA 28.55Tsync(SR) 104.2 | NA 15.1Tsync(F) 15.0 | 5.60 2.17is given in Table 1. The timings along with the standard deviations are basedupon a sample space of 300-400 data points. The values with no correspondingstandard deviations correspond to the sources of synchronization lag, whichare derived from other values. The total lag time for Qview = 268:0 ms andQinteract = 690:0 ms. As a point of reference, Liu et. al. [9] conducted experi-ments on a telemanipulation system and found the allowable lag time to be 100ms and 1000 ms (1s) for inexperienced and experienced users, respectively. TheTsync(F) value is based upon a frame rate of 48 frames per second per eye andan average scan rate of 120 Hz for the Marquee 8000 projectors. The averageof this synchronization lag is equal to one half of the frame-induce time. Thesystem con�guration consisted of a Ethernet connection between the SGI Onyxand IBM SP-2.The values indicate that the rendering time is the major lag componentfor viewpoint lag, Qview, comprising 77.61% of the lag time. For Qinteract,the rendering and read network times are the major lag components, togethercomprising 58.69% of the lag time. For the case involving a very complex simu-lation, the pro�le of Qinteract will change with the possibility of the simulationtime also being a major component of the lag time; the Qview pro�le wouldremain the same.6 Lag-Reducing MethodsIn this section we consider methods for reducing the end-to-end lag. We focuson the rendering, simulation, and network lags, which can be major factorsa�ecting the end-to-end lag as discussed in the previous section. In particularwe focus on scene complexity, networks, and parallelism.6.1 Scene ComplexityThe rendering lag is a function of the scene complexity and the geometry trans-formations. This scene consists of essential objects a�ected by the simulationand the background used to give the scientist the illusion of being in the remoteenvironment. For the grinder application, the essential objects are the table,part, and wheel. The image of the tool shop creates an illusion of being in a

Table 2: Various lag values for the reduction in scene complexity.Lag Mean Std. Dev. %Qview %Qinteract(ms) (ms)Ttrack 30.0 8.8 23.53 6.26Tsync(TR) 15.0 | 11.76 3.13Trender 67.5 8.8 47.37 14.09Tsync(RS) 99.0 | NA 20.67Twrite 0.102 0.048 NA 0.02Tsim 21.8 1.2 NA 4.55Tread 197.0 65.0 NA 41.13Tsync(SR) 34.0 | NA 7.10Tsync(F) 15.0 | 11.76 3.13manufacturing setting. The rendering lag can be reduced by reducing the com-plexity of the background without sacri�cing the interface to the simulation.We conducted an experiment to determine how much reduction can occurwhen reducing the scene complexity. In particular, we eliminated all the ren-dering code associated with the background, the image of the machine shop,and extracted the new times of each of the sources of lag. The results are givenin Table 2. The total time for Qview = 127:5 ms and Qinteract = 479:0 ms. Theresults indicate that the rendering time is reduced by a factor of one third {208 ms to 67.5 ms. This reduction results in a Qinteract reduction by a factor oftwo thirds { 690 ms to 479 ms, and a Qview reduction by a factor of one half {268 ms to 127.5 ms. Hence reduction in scene complexity had a major impacton the lag time for the grinder application. The read network time becomesthe major factor with Qinteract.6.2 Network LatencyThe current con�guration of the supercomputing/virtual environment consistsuses a local Ethernet connection. The use of HIPPI only connections or ATMonly connections would reduce the time needed for Tread and Twrite.The network connections become very important if the supercomputing in-volved is located at a remote site, involvingWAN connections. For this case thenetwork latency can dominate the interaction lag. Latency-hiding techniquesmust be used to overcome this lag. This can be achieved by overlapping thesimulation computation with the shipping of the generated data. The networkwould be time multiplexed between the simulation processors such that it isalways busy shipping data.6.3 ParallelismFurther parallelism can be exploited with the rendering algorithms as well asthe simulation. Parallel graphics algorithms is a very active area of research.Parallelism is exploited in the CAVE environment by spawning o� processesfor the tracking systems and the three rendering processes. Further parallelism

can be exploited within each rendering process in terms of the di�erent objectsinvolved in the display.Much work has been done with parallel �nite element analysis. This workinvolves exploiting the data parallelism available in the problem. For this envi-ronment, the network connection must also be considered. The decompositionmethod must incorporate strategies for keeping the network connection to thegraphics process as busy as possible, as discussed above. The network lag canby a major contributor of the interaction lag as illustrated by the precedingsection in which Tread was the major component of the interaction lag for thedisplay with no texturing.7 SummaryLag has been often studied in the context of teleoperated machines, head-mounted displays, and telepresence systems [9, 16]. In this paper we extendedthese models and techniques for lag analysis to those suitable for analysis ofintegrated supercomputer applications with interactive, immersive virtual in-terfaces. This extension consisted of the addition of two additional sources ofend-to-end lag, network time and simulation time. We provided the frameworkof a performance model to provide insight on the major contributions of lagtime for supercomputing/virtual environment.We conducted an extensive case study of a supercomputing/virtual systemused to display the results of a �nite element simulation of a grinding process,a simple but widely used manufacturing task. The results indicated that therendering time is the major component for viewpoint lag, Qview, comprising55.61% of the lag time. For Qinteract, the rendering and read network timesare the major lag components, together comprising 58.69% of the lag time. Forthe case when of a very complex simulation, the pro�le of Qinteract will changewith the simulation time also being a major component of the lag time; theQview pro�le would remain the same.We also discussed some methods to reduce the end-to-end lag for a super-computing/virtual system. We considered scene complexity, parallelism, andnetwork latency. We conducted an experiment to measure the impact on lagtime from reducing the scene complexity. The results indicated that the ren-dering time is reduced by a factor of one third { 208 ms to 67.5 ms. Thisreduction results in a Qinteract reduction by a factor of two thirds { 690 ms to479 ms, and a Qview reduction by a factor of one half { 268 ms to 127.5 ms.Hence reduction in scene complexity had a major impact on the lag time forthe grinder applications.AcknowledgmentsThe authors acknowledge Chris Stau�er for the time devoted to collecting someof the data used in this paper and Micheal Papka, Terry Disz, Shannon Brad-shaw, and William Nickless for the hours of discussions about the CAVE. The�rst author was supported by a National Science Foundation Young Investi-gator Award, under grant CCR{9357781. The second and third authors were

supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38.References[1] Deering M. High Resolution Virtual Reality. Computer Graphics 1992;26:195-202[2] The Flock of Birds Installation and Operation Guide, Ascension Technol-ogy Corporation, 1994[3] Friedmann M, Starner T, Pentland A. Device Synchronization Using anOptimal Linear Filter. Computer Graphics 1992; 25:57-62[4] Funkhouser T, Sequin C H. Adaptive Display Algorithm for InteractiveFrame During Visualization of Complex Virtual Environments. ComputerGraphics 1993; 27:247-254[5] Holloway R L. Viper: A Quasi-real-time Virtual Worlds Application.Tech-nical Report TR92-0004, University of North Carolina at Chapel Hill, 1991[6] Hughes T. The Finite Element Method, Prentice-Hall, Inc., EnglewoodCli�s, NJ, 1987[7] Jones M, Plassmann P. Solution of Large, Sparse Systems of Linear Equa-tions in Massively Parallel Applications. In: Proceedings of Supercomput-ing, 1992[8] Liang J, Shaw C, Green M. On Temporal-Spatial Realism in the VirtualReality Environment. In: Proceedings of the 1991 User Interface SoftwareTechnology, 1991, pp 19-25[9] Liu A, Tharp G, French L, Lai S, Stark L. Some of What One Needsto Know about Using Head-Mounted Displays to Improve TeleoperatorPerformance. IEEE Transactions on Robotics and Automation 1993; 9:638-648[10] Mine M R. Characterization of End-to-End Delays in Head-Mounted Dis-play System. Technical Report TR93-001, University of North Carolina atChapel Hill, 1993[11] Cruz-Neira C, Sandin D J, DeFanti T. Surround-Screen Projection-BasedVirtual Reality: The Design and Implementation of the CAVE. In: Pro-ceedings of SIGGRAPH, 1993, pp 135-142[12] Noe R. Pablo Instrumentation Environment User's Guide. University ofIllinois at Urbana-Champaign, Department of Computer Science, 1994[13] Silicon Graphics Onyx Installation Guide. Document Number 108-7042-010.[14] Smith B, Gropp W. Scalable, Extensible, and Portable Numerical Li-braries. In: Proceedings of Scalable Parallel Libraries Conference,1993, pp87-93

[15] Wloka M. Time-critical Graphics. Technical Report CS-93-50. Brown Uni-versity, Department of Computer Science, 1993[16] Wloka M. Lag in Multiprocessor Virtual Reality. Presence 1995; 4:50-63

